2017 Pacific Association for Computational Linguistics

A Proposal of a Methodology to Acquire Syntactic Rules Gradually
by Inductive Logic Programming

Hiroyuki Kameda
School of Computer Science
Tokyo University of Technology

kameda@stf.teu.ac.jp

Abstract

A new methodology to acquire syntactic rules gradually
by applying deduction to grammatical sentence generation
and induction to discover a more general and more
compact set of syntactic rules. Induction process is
implemented by Prolog interpreter system, and inductive
process is implemented by an Inductive Logic
Programming system Aleph. Some grammar acquisition
experiments were done and considered feasibility, validity
and limitation of the proposed methodology.

Key Words- Grammar acquisition, Inductive logic
programming, Grammar acquisition experiments

1. Introduction

Every living life on Earth, in general, reacts and
behaves as adaptively as possible to various kind of stimuli
which come into and from their own body. Especially,
human not only reacts and behaves adaptively, but also do
much more intelligently even by recognizing and acquiring
highly abstract concepts. As a result, human being has
come to the evolutionary stage of using sophisticated
languages, and now is thought as being at the top rank in
the primates.

A natural language is one of important tools for us,
human beings, to describe, keep, and transmit various
information, concepts, to think, e.g., to infer logically, and
then to communicate with each other.

From this point of view, elucidation of principles and
mechanism is really important to understand our Human,
1.e., the essence that makes human the human. At the same
time, if a natural language is a tool that makes us social
living things, then it is meaningful that robots and virtual
agents are able to communicate like humans, so that they
and human can communicate with each other smoothly.

On this belief, we have been challenging to elucidate
the essence of language (“la langue” and “le language” in
French). Author Kameda mainly is engaged in natural
language processing from various sides of cognitive
psychology, applied linguistics, and logics [1]. Another

234

Saori Aida
School of Computer Science
Tokyo University of Technology
aidasor@stf.teu.ac.jp

author Aida is one of young researchers who has been
engaged in s3D (stereoscopic 3Dimensional) visual
psychology, and has already found new phenomena of s3D
[2]. Out of these studies, this short paper reports one result
of our study on grammar acquisition.

More concretely to describe, we propose a syntactic
rule acquisition methodology. At first, a small and simple
set of syntactic rules is prepared as a seed, to creates a set
of grammatically correct sentences. Then a new set of
syntactic rules, as the next seed, is created with use of
Inductive Logic Programming method. This procedure will
be repeated again and again. As this procedure, it is
expected that a more adequate and compact set of syntactic
rules is created finally.

In this paper, we at first, in the chapter 2, describe
related works historically, in chapter 3. technical terms are
defined with some explanation for readers to understand
this paper more easily. In the chapter 4, experiments are
reported based on proposed methodology, and in the
chapter 5. we conclude our study.

2. Related works (Historical review)

As readers would know, grammar acquisition has been
studied for a really long time. One of famous research is
the grammar research on Sanskrit language by an Indian
linguist Panini found in the 4th century B.C. In modern
age, Saussure’s structuralism and Chomsky’s generative
grammar are well known. Especially Chomsky’s theory of
grammar established a rigid foundation of linguistic
research [3]. Dependency theory by French linguist
Tesniére and thoughts on language of Humboldt also gave
an impact on grammar study to be done more precisely.

These studies, however, focused mainly on, for example,
“what is language?” or “How can we describe language in
more explicit way?” Indeed they contribute research on
language, grammar and etc., but cannot clarify a
methodology how we can grasp the essence of languages,
and describe a system of a targeted language in concrete
way.

On the other hand, as computer technology emerged in
the 20th century develops, many programming languages

2017 Pacific Association for Computational Linguistics

were studied and proposed. These studies gave much
impacts on natural language research, and at the same time
programming languages Snob, Lisp and Prolog and etc.
gave also much impact on linguistic research. One of
remarkable research which gave impact on natural
language processing is Inductive Logic Programming
proposed by Muggleton [4]. He implemented a new system
called Prolog which has ability to infer inductively based
on a background knowledge.

By this machine learning system, it may be feasible to
discover a new rigid grammar based on background
knowledge, i.e., the knowledge accumulated by researchers
for a long time.

Another important point is that a natural language is a
too complex system for human to grasp. This implies that
systems engineering should be applied in the future.

By considering these facts, we have come to an idea of
grammar acquisition methodology with use of inductive
logic programming.

3. Our underlying basic ideas and definition of
technical terms

In this chapter, we describe some technical terms and
ideas to understand this paper more easily. Before we
mention them, the research goal of this paper will be given
first.

3.1. Our understanding of the present situation
and our research goal

® Understanding of the present situation of grammar
research: There are much amounts of fragments of
knowledge on grammar. They are well-known and can
be described explicitly. But a grammar is a too
extremely complex system for us to understand it
explicitly and holistically. Therefore, we have immense
difficulty in design and implement knowledge on
grammar systematically. If we could do that, it is unclear
that acquired grammar is really optimized as a system
from a view of systems engineering.

Our research goal to reach: To get an optimized, i.c.,
compact & inconsistent system of grammar.

In order to achieve our research goal, we propose a new

methodology of acquiring a set of syntactic rules by
inductive logic programming.

3.2. Definition of technical terms

® Chomsky’s grammar: Grammar is a set of four things
<Vn, Vt, s, P>;

235

Vn: a set of non-terminal symbols,
Vt: a set of terminal symbols, or vocabulary (a set of
words)
s: start symbol, from which sentences are derived
or produced.
P: a set of production rules or rewriting rules.

These terms are defined and used in general in choosy’
school.
® abstract language: In Chomsky’s grammar frame, Vt
and s are defined concretely, but Vn and P are not yet
defined concretely.
concrete language: a set of all sentences which are
grammatical correct from the view of a certain grammar
system.
seed grammar: an initial set of grammar. This is used as
an initial value of gradual grammar acquisition method.

3.3. Our underlying basic ideas

(1) our research assumption:
Chomsky says:

® There exist words at the beginning (a belief).

® Sequence of words is called a sentence (a definition).

®sentences are grouped into two categories:
grammatically correct ones and grammatically incorrect
ones.

® There exists a set of rules which generate and accept
grammatically correct sentences exactly (assumption).

®The set of rules can be described in the frame of
Chomsky’s well-known formal grammar (assumption).

Our comments:

® L anguage processing is done by human.

® [Language processing ability is equal to symbol
processing ability.

® This ability is implemented on computer systems.

® Computer system consists of hardware and software.

® Software consists of knowledge of a language system
and that of procedure.

®These two knowledges can be described and
implemented in the same expression form with use of
programming languages Lisp and Prolog.

® That is, these two knowledges are expected to be learned
and acquired by a certain method.

(2) Overview of our research idea:
In the following, we describe overview of our
considering flow in the processing order.

[Step 1] To define word unit: Of course even though
there may be many discussions and definitions, we
defined in this paper that sequence of characters split
by spaces is a word. Because this paper handles only
English text.

2017 Pacific Association for Computational Linguistics

[Step 2] To define part of speech (hereafter, “PoS™) or
category of words: Names of elements of PoS are
arbitrary. But problems that “how many categories
should be prepared?” or “There should be any
relationship among these categories?” are still open in
this paper. The problems are next research themes for
us and W-operator method is one of the most feasible
ones [5]. In this paper, we adopted a subset of a
standard PoS depending on problem settings. A word
has only properties of spelling, pronunciation, part of
speech, and meaning.

[Step 3] To design grammar conceptually: At this point,
vocabulary and a set of syntactic rules are defined
conceptually, where the word “conceptually” means
that the number of PoS and relationship among them
are important, on the other hand, names of these are
ignored at this step.

[Step 4] To describe conceptual grammar in the formal
grammar frame: In this paper, Chomsky’s frame was
adopted to have basic discussion. A setting of grammar
expression frame causes to drop out some details of
grammar information by abstraction, but we ignored
the phenomena in this research.

[Step 5] To implement grammar as a seed grammar in a
programming language Prolog: An example of seed
grammar is as follows;

--Syntactic rule:
sentence(A,[]) :- noun(A,B), verb(B,C),
adverb(C,[]).
--Vocabulary: noun([dogs|T],T). verb([ran|T],T).
adverb([fast|T],T).

[Step 6] To generate sentences, i.e., to generate a concrete
language; All grammatical correct sentences are easily
generated by Prolog system.

[Step 7] To discover some new grammar rules, i.e., some
new more general but compact set of syntactic rules: To
realize this, we adopt an inductive logic programming
system Aleph (A Learning Engine for Proposing
Hypotheses) [6].

[Step 8] To combine syntactic rules of a seed grammar and
generated grammar together: The new combined rules
is the next seed grammar.

[Step 9] To repeat procedures [Step 6]-[Step 8] until a
good enough quality of grammar system, which means
the grammar accepts almost all grammatical correct
sentences, and almost all grammatical incorrect
sentences: Details are discussed later in the chapter 4.

236

4. Experiments
4.1. Overview of the flow of experiment procedure

All Experiments in this paper were done according to the
following flow of procedure in principle. Note that all
examples hereafter are carefully selected ones, and type of
grammar is restricted to context free, so that readers can
understand the essence of my proposal clearly and easily.

[Step 1] To create a file “grammar sync.b” manually by
using a text editor, in which background knowledge
of syntactic rules are written.
® Example: sentence(A,[]):-noun(A,B), verb(B,C),

adverb(C,[]).

[Step 2] To create a file “grammar voc.b” manually by
using text editor, in which background knowledge
of words are written. That is, “grammar_voc.b”
contains data of vocabulary.
® Case of vocabulary 1:
noun([dogs|T],T). verb([ran|T],T).
adverb([fast|T],T).

® Case of vocabulary 2:
noun([dogs|T],T). noun([cats|T],T).
verb([ran|T],T). verb([walked|T],T).
adverb([fast|T],T). adverb([slowly|T],T).

[Step 3] To create a file grammar go.pl manually by using
a text editor, in which a Prolog program producing
all grammatical correct sentences one by one.

In this paper, the following one is used to produce a
concrete language,. i.c., a set of grammatically correct
sentences. Prolog program to generate a concrete language
L used in this paper, cf. 3 in Appendix I:

- g(A),fail.

[Step 4] To execute ILP system to discover a new more
general and compact grammar: Procedure to execute
program is as described below:

swipl aleph_2013_v2.pl
(To evoke SWI-Prolog interpreter system)
:- read_all(lang).
(To read in all information)
:- induce.
(This is a pre-install command of Aleph to
discover new knowledge)

[Step 5] To create more general-and-compact abstract
grammar by combining seed grammar and produced
grammar in [STEP 4] above:

Examples:

2017 Pacific Association for Computational Linguistics

® Case of vocabulary 1 :

s(A,B) :- noun(A,C), verb(C,D), vp(D,B).
® Case of vocabulary 2 :

s(A,B) :- noun(A,C), vp(C,B).

These procedures described above are executed in
various settings in this paper.

4.2. A series of Experiments
[Preliminary Experiment 1]

(1) Purpose: To confirm validity of programming codes to
produce a concrete language from an abstract grammar.
(2) Programming code settings: The following code in
Prolog are written, and save it into a file
“grammar_go.pl”.
This code is used as a seed grammar through all
experiments in this paper.
»vocabulary: Case of vocabulary 1 is set in a file
grammar_voc.pl: noun([dogs|T],T). verb([ran|T],T).
adverb([fast|T],T).
sentence(A,[]) :-

> Syntactic rules: noun(A,B),

verb(B,C), adverb(C,[]).

(3) Results: All generated sentences, in this case only one
sentence dogs ran fast. are grammatical with no
problems.

(4) Considerations: The Prolog program runs in a proper
way, so with no problem expected output comes out.

[Experiment 2]
Does the proposed methodology work?
(cf. Appendix 1. and IL.)

(1) Purpose: To confirm fundamental validity of the
proposed experiment system in 4.1.

(2) Programming codes settings: In this experiment,
Inductive Logic Programming system “Aleph” was
adopted to discover a new set of syntactic rules from a
concrete language, which was produced by the
program in the preliminary experiment above.

» Vocabulary: noun([dogs|T],T). noun([cats|T],T).
verb([ran|T],T). verb([walked|T],T).
adverb([fast|T],T). adverb([slowly|T],T).
6 words in all.

» Syntacitic rules: same in [preliminary experiment],

sentence(A,[]):-noun(A,B),verb(B,C),adverb(C,[).

One rule in all.

» Background knowledge:

v" vp(S1,82) :- verb(S1,S3), adverb(S3,S2).
one background knowledge in all.
Note) In ILP, background knowledge file also
contains parameter settings, mode declaration,
data type definition. But explanation of these are

237

omitted here in this paper. For more details, see
references [4, 5].
> Positive example dataset: The dataset is created by
SWI-Prolog system based on the vocabulary and
syntactic rules described above. 8 sentences in all.
» Negative example dataset: The dataset we used was
prepared by a human manually as followed;
s([a,dog,walks,the],[]).
s([a,man,walks,the],[]).
s([a,man,walks,the,walks],[]).
s([a,man,walks,the,house,a],[]).
s([a,man,walks,the,dog,at],[]).
s([the,man,walks,the,dog,to,the],[]).
s([the,dog].[]).
(3) Result: ILP system Aleph acquired a syntactic rule
such as s(A,B) :- noun(A,C), vp(C,B).
Considerations: This experiments showed proposed
methodology is fundamentally valid. But the size of
seed grammar is small. Bigger size of seed grammar
should be used to test the validity of the methodology.

“4)

[Experiment 3]
Methodology still works
on the bigger size of seed grammar?

(1) Purpose: To check the validity of the proposed

methodology on a bigger seed grammar. In this

experiment, we try to use bigger vocabulary and bigger
size of syntactic rules.

Programming code settings:

» Vocabulary: noun([dogs|T],T). noun([cats|T],T).
verb([ran|T],T). verb([walked|T],T).
adverb([fast|T],T).

adverb([slowly|T],T).
det([the|T],T). adj([big|T],T).
» Syntanctic rules:

sentence(A,[1):-np(A,B),verb(B,C),adverb(C,[]).
np(A,B):-noun(A,B).
np(A,C):-det(A,B),noun(B,C).
np(A,C):-adj(A,B),noun(B,C).
np(A,D):-det(A,B),adj(B,C),noun(C,D).

» Background knowledge:

np(S1,S2) :- det(S1,S3), noun(S3,S2).
np(S1,S2) :- det(S1,S3), adj(S3,S4), noun(S4,S2).
vp(S1,S2) :- verb(S1,S3), adverb(S3,S2).
Only three syntactic rules in all in this case.
Note: In ILP, background knowledge is the
knowledge we have already known so far.

> Positive example dataset: The dataset created by

SWI-Prolog contains 32 sentences. No duplicated
sentence was found in the dataset.

> Negative example dataset: same as in [Experiment

2].
(3) Result: Three syntactic rules were discovered.
s(A,B) :-noun(A,C), vp(C,B).
s(A,B) :-np(A,C), vp(C,B).

@

2017 Pacific Association for Computational Linguistics

s(A,B) :-adj(A,C), noun(C,D), vp(D,B).

(4) Considerations: Everything works so far so good. But
when positive example dataset might contain
duplicated sentences, they should be eliminated, for
example, by command “sort —u”. And also in general,
not all sentences produced by SWI-Prolog based on
given background knowledge are positive. Sometimes
negative examples may be generated. This fact is good
to gather more negative example, but bad to create
adequate grammar by this methodology. We need
another software to eliminate positive and negative
example from the generated sentences automatically.

[Experiment 4]
Methodology still works
on another bigger size of seed grammar?

(1) Purpose: To check the validity of the proposed

methodology on another bigger seed grammar again.

And to confirm there are in general both positive and

negative examples in the generated sentences.

Programming code settings:

»Vocabulary: A little bit bigger one

noun([dogs|T],T). noun([ants|T],T).
verb([ran|T],T). verb([walked|T],T).
adverb([fast|T],T). adverb([slowly|T],T).
det([the|T],T). det([a|T],T). det([an|T],T).
adj([big|T],T). 10 words in all.

» Syntactic rules: same as in [Experiment 3].

» Background knowledge: same in [Experiment 3].

» Positive example dataset: The dataset was

generated just in the same way in [Experiment 3] by
SWI-Prolog based on the vocabulary, syntactic rules
and background knowledge. In this case, the dataset
has 64 non-duplicated sentences, but 32 of it, i.e.,
half of the data, were grammatically incorrect ones
from the view point of standard English grammar.
Examples are as followed: s([a,ants,ran,fast],[]).
s([an,big,dogs,ran,fast],[]). These should be grouped
into negative example, because number agreement
between article and noun is not invalid in standard
English.

> Negative example dataset: same in [Experiment 2].

(3) Result: same as in [Experiment 3].

(4) Considerations: As described before, Positive
example dataset contains both positive and negative
examples. But the Dataset was applied to ILP system
to discover a new grammar. The result was luckily not
so bad. This phenomenon suggests that proposed
methodology with use of ILP should be robust against
nosy data. This is one of the next research theme. At
the same time, when we can write a software to
eliminate positive examples and negative examples
adequately, proposed methodology will be expected to

2

such as

238

work automatically and effectively. But the dataset is
generated based on a seed gramma, and generated
sentences are grammatically correct from the point of
view in the given grammar. Therefore elimination
should be done by human manually. But this task is too
hard for human to do, because generated sentences, i.c.,
a concrete language is in general very large, and
prescriptive grammar is also very complicate for us to
handle. Systems Engineering methodology, e.g.,
MBSE (Model Based Systems Engineering) should be
investigated if it is applicable to grammar acquisition.
This one is also the next research theme.

5. Discussions

This paper proposed a methodology to acquire grammar
gradually, in the first step by generating a concrete
language, i.c., a set of grammatical correct sentences from
a seed grammar, and in the second step by discovering an
upgraded version of grammar with use of inductive logic
programming system “Aleph”. This methodology was
checked by experiments, and fundamental validity was
confirmed. Validity in the level of principle was indeed
confirmed, but feasibility cannot become clarified. From
the point of view of Systems Engineering, proposed
methodology should be investigated further in terms of
complexity and big data.

6. Conclusions

Grammar acquisition was tried by combining and
mixing the two different types of inferences, i.e., deduction
and induction. Deduction was implemented by SWI-Prolog
interpreter system, and induction was implemented by
inductive logic programming system Aleph. The latter
system provides excellent faculty to infer inductively on
background knowledge, which is already known and
expressed in some language. For this reason, we proposed
to apply the excellent faculty to grammar acquisition. We
conclude that the proposed methodology was confirmed to
work well in principle, but still should be investigated, and
moreover estimated in terms of not only natural language
processing but also systems engineering.

Acknowledgement

It is my pleasure to thank Prof. Chiaki Kubomura
(Yamano College of Aesthetics). He has been working and
contributed to studies on Thought and Language for a long
time. This paper is also partially based on his research
results by his hard efforts. Now he is, however, seriously
sick. We hope he would recover his health soon, and come

2017 Pacific Association for Computational Linguistics

back to our research activity. We really thank Prof.
Kubomura again.

References

[1] Hiroyuki Kameda, Chiaki Kubomura, "Unknown
Syntactic Rule Acquisition by Inductive Logic
Programming -Towards Autonomously
Evolutionary Intelligent Parser-," Proc. of the Fifth
Japan-China International Workshop on Internet
Technology and Control Applications (ITCA2006),
2006, pp.6-10.

[2] Saori Aida, Koichi Shimono, and Wa James Tam,
“Magnitude of Perceived Depth of Multi Stereo-
Transparent-Surfaces,” Attention, Perception, &
Psychophysics, vol.77, No.1, 2015, pp.190-206.

[3] Noam Chomsky, Syntactic Structures, Mouton, ond
Edition, 1958.

[4] Stephen Muggleton, “Inverse Entailment and Progol,”
New Generation Computing, Ohmsya and Springer,
Vol.13, 1995, pp.245-286.

[5] Shan-Hwei Nienhuys-Cheng, and Ronald de Wolf,
Foundations of Inductive Logic Programming,
Springer Verlag(1977).

[6] Ashwin Srinivasan, The Aleph Manual Version 4
and above, (http://www.cs.ox.ac.uk/activities/
Machinelearning/Aleph/aleph, checked in 2017)

Appendix I. List of codes

1. Code in the file "grammar_voc.pl":
noun([dogs|T],T). noun([cats|T],T).
verb([ran|T],T). verb([walked|T],T).
adverb([fast|T],T). adverb([slowly|T],T).

2. Code in the file "grammar_syn.pl":
sentence(A,[]) :- noun(A,B), verb(B,C), adverb(C,[]).

3. Code in the file "grammar_go.pl":
g(A) :- sentence(A,[1),
tell("tmp.txt"), write(s(A,[1)), write('."), nl.
- g(A),fail.
:- halt.

4. Code of Parameter setting:
:- set(clauselength,1000).
:- set(clauses, 100).
:- set(i,10000).
:- set(depth,1000).
:- set(refine, false).
:- set(minpos,2).
:- set(nodes,500000).
:- set(bottom_construction,reduction).

239

5. Code of mode declaration:

:- modeh(1,s(+wlist,-wlist)).

:- modeb(1,det(+wlist,-wlist)).
:- modeb(1,prep(+wlist,-wlist)).
:- modeb(1,noun(+wlist,-wlist)).
:- modeb(1,verb(+wlist,-wlist)).
:- modeb(* np(+wlist,-wlist)).
:- modeb(*,vp(+wlist,-wlist)).
:- modeb(1,adj(+wlist,-wlist)).
:- determination(s/2,det/2).

:- determination(s/2,prep/2).

:- determination(s/2,noun/2).

:- determination(s/2,verb/2).

:- determination(s/2,np/2).

:- determination(s/2,vp/2).

:- determination(s/2,adj/2).

:- determination(s/2,adverb/2).

Code of type definition:
wlist([]). wlist((W|Ws]) :- word(W), wlist(Ws).
word(X):-atomic(X).

Code in the file "backgroundKnowledge.pl":
np(S1,S2) :- det(S1,S3), noun(S3,S2).

np(S1,S2) :- det(S1,S3), adj(S3,S4), noun(S4,S2).
det([a|S],S). det([the|S],S). det([every|S],S).
vp(S1,S2) :- verb(S1,S3), adverb(S3,S2).
noun([dogs|S],S). noun([cats|S],S). noun([cars|S],S).
noun([man|S],S). noun([dog|S],S). noun([house|S],S).
noun([ball|S],S). verb([ran|T],T). prep([at|S],S).
prep([to|S],S). prep([on|S],S). prep([in|S],S).
prep([from|S],S). adj([big|S],S). adj([small|S],S).
adj([nice|S],S). adj([happy|S],S). adverb([fast|T],T).
adverb([slowly|T],T). adverb([happily|T],T).

Appendix II. Output of the program

[theory]
[Rule 1] [Pos cover =4 Neg cover = 0]
s(A,B) :-
noun(A,C), vp(C,B).
[Training set performance]
Actual
+ -
+ 4 0 4
Pred
-4 7 11
8 7 15

Accuracy =0.7333333333333333

