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Abstract. The paper discusses a simple, rule-based system of extracting
relevant information from a user’s query. The idea is to extract this
information by using only dependency relations and POS tags, obtained
from the Stanford Dependency Parser. Using the universal dependency
tags provided by the parser, we try to understand the semantic structure
of a query. This is done by looking for semantically important dependents
of the verb, such as the subject, direct object, prepositions and their
objects, and so on. Using information obtained from a combination of
the dependency relations and the inherent semantic implications of words
(such as ‘who’ or ‘where’), we try to extract the main objective of the
query, and the constraints pertaining to it. The implementation itself
is domain independent, however, a mapping to a knowledge base would
require some domain knowledge. Some examples of the implementation
over a question corpus for a library and a corpus of questions designed for
a course management portal in the academic domain, created previously
by [1] is discussed.

1 Introduction

Table 1. Example of Ambiguity

Q: Who takes the NLP course?

<< find: professor; constraint: NLP >>
take = teach

Q: Who has taken the NLP course?

<< find: students; constraint: NLP >>
take = register

In order to provide an effective question answering system, it is important
to be accessible to the common user. The common user does not know a query
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language or programming or understand templates and formats. In order to be
accessible to this common user, the system must be able to understand a natural
language query. For example, for a user to be able to access data from a database,
not only does the user need to know a query language used by the database, but
the user needs to have a thorough knowledge of the database schema as well in
order to be able to formulate a query based on the information they seek. Most
users don’t have the requisite knowledge.

The idea behind the interface is to allow users to ask questions in everyday,
conversational language, and process these questions to convert them to a valid
query in a language understood by the database (such as SQL) or any other
knowledge representation system (such as an ontology) in order to obtain re-
sults, and thereby answer the user’s questions. The typical information retrieval
approach is to filter out function words and use the noun phrases as keywords;
here we show that significant information can be gained by inferring information
from function words.

However, since conversational language is fraught with ambiguities, and users
may ask the same question in many different ways, the task of breaking down
a user’s query to understand what they are looking for is not easy. Often, such
ambiguities cannot be resolved without contextual information, which is not
available in a single query question-answering system.

In the example in Table 1, the questions ‘Who takes the NLP course? /
Who has taken the NLP course?’ could both be asking about the professor who
teaches the course or the students who usually register for it. Although this
ambiguity cannot be resolved without additional context, we hope to at least
extract the information that the user in this case is looking for a person or
persons (indicated by who), who is the agent of take where the course name is
NLP. The keywords who, take and NLP are extracted with the help of universal
dependency tags produced by the Stanford Parser; the association of take with
either register or teach and the identification of NLP as a course name would
require domain specific and in fact knowledge base specific information.

2 Related Work

One of the easiest approaches is to run a keyword or pattern matching algorithm
that looks for domain specific keywords and patterns, and matches them to a
predefined set of queries [2]. The limitation of this approach is that a large
number of keywords and patterns must be anticipated, due to the large number
of possible variations in language. This approach also tends to perform poorly
in case of complex queries.

Systems such as PLANES [3], PRECISE [4] and STEP [5] opt for frames
or patterns based on semantic grammar or, as in the case of STEP, a phrasal
lexicon developed over the database. As in the case of keywords, this approach
is not only domain dependent, but also relies heavily on a pre-constructed list,
which is restrictive and therefore needs to be extensive in order to be practically
useful. Such systems also tend to be accurate for semantically tractable queries.
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A rule-based system was proposed by [6] that was based on the framework of
Computational Paninian Grammar [7] to identify the semantic templates that a
query may belong to. This approach uses domain specific semantic mapping,
wherein Paninian grammar constructs are mapped to dependency relations.
However, it requires the creation of verb frames with specified arguments, making
the query structure rigid. All possible argument structures must be identified for
all possible verbs in the domain, and each of these arguments must be mapped
to the relevant entities they refer to in the knowledge base. Combined with the
introduction of parser errors, this approach can work well with limited types of
questions.

Another approach is to use machine learning algorithms to generate a sta-
tistical model, as explored in [1] where the focus is on identifying the main
concepts required for query generation, using a specific tag-set and a CRF++
algorithm. The algorithm tries to identify the concepts and map them directly
to the database attributes they refer to. As with any machine learning approach,
the system is dependent on the quality of the training data, and any changes
that are made require re-training with new data. However, this system shows a
high precision for a domain specific system, in this case a course management
portal in the academic domain.

3 Owur Approach

Our emphasis was to try and identify the objective of a user’s query, that is,
the data the user is looking for and the constraints pertaining to this data. The
idea was to do this using as few tools as possible. We only use the Stanford
POS Tagger and the Stanford Dependency Parser for the implementation of our
system (see Fig.1).

We assume that the queries are free of errors and are grammatically sound,
and that all required arguments are present in the query. We also don’t attempt
to resolve abbreviations and ambiguities.

The system is able to extract information from ungrammatical queries in
certain cases where the Stanford Parser is able to generate a fairly accurate
dependency parse. Since the aim was to identify the objective and constraints
from the query, we did not test the mapping from the obtained information
to a knowledge representation system (such as a database), but we explore the
possibility.

3.1 Motivation behind using Dependency Relations

The advantage of using dependency relations is that they are syntacto-semantic
relations. This makes them word-order independent. The same question formu-
lated in different ways can lead to similar dependency relations (such as a ques-
tion in active/passive voice); this allows us to easily group similar user queries
without having to anticipate all the possibilities.
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Fig. 1. System Architecture

Dependency relations also give us an idea of the relationship between the
words and therefore the information the user is looking for and the constraints.
This information cannot be obtained from simple syntactic parsing, such as
Phrase Structure Trees, as they are highly dependent on the word order.

3.2 Dealing with Parsing Errors

After obtaining the dependency relations and parts of speech of a given query,
we try and construct some simple understanding of the query. It was found
that the Stanford Dependency Parser does not always tag the main verb of the
sentence as ROOT, and tends to tag question words or sometimes other nouns in
the query as ROOT, especially in queries containing a copula. This also leads to
identification of the direct object and other relations incorrectly, thereby making
any mapping using specific tags inaccurate.

However, the overall structure identified between the words of the sentence
is usually correct. In order to avoid the errors introduced by faulty tags, we
crosscheck the assigned tags with the part-of-speech of the word, and in case of
any discrepancy, we disregard the tags assigned to the words. For example, in
case of questions like ‘What is X', the parser may tag What as the root. Since
What would have a POS tag of WP, we disregard the ROOT tag, and instead
use only the structure of the sentence in terms of word dependencies, along with
POS information.

This approach for dealing with parsing errors is only useful for short ques-
tions; for longer questions with multiple verbs and nouns significant information
is lost. This means that often dependency relations are missing and wrong tags
are assigned to words, which introduces significant error.
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3.3 Processing the Parser Output

Prepositions and their Arguments In order to find relevant information,
the system looks for the children of the root that are nouns, adjectives pertaining
to nouns, prepositions and their children, and so on.

Prepositions such as ‘by’, ‘on’, ‘of’, etc. provide useful information about the
relations and constraints. For example, although ‘on’ might also have a locational
meaning attached to it, in the context of a library QA we can assume it shows
reference to a topic (‘What books on image processing are available?’); similarly
for the prepositions about and under.

Prepositions such as in and af often convey spatial or temporal information.
Their noun dependents, along with the prepositions themselves, are considered
to be constraints.

Stanford parser identifies the preposition by and its dependent as agents; this
information is also added to the constraint list. For example, consider ‘What are
the books written by Ayn Rand?’. Here the user is looking for books where the
author is Ayn Rand. The preposition by here indicates that Ayn Rand is the
agent of ‘write’, which in the domain of library translates to ‘author’.

In fact, in almost all cases, the noun dependent of the preposition turns out
to be a crucial constraint. However, there are a few cases in questions like ‘What
books by Jeffrey Archer are available in the library?’, that have to be identified
as irrelevant information since in the library is technically implied and provides
us with no useful information — and filtered out. But this is a domain specific
assumption, and there is no way to judge the relevance otherwise.

Question Words We look for the question words in the query if any, and use
them to further identify the user’s intent. For example, queries using ‘who’ are
looking for a person (in case of a library corpus, perhaps the author, or in case
of the courses domain, perhaps a student or a professor), queries using ‘where’
are looking for a location, and so on.

These interpretations are domain dependent, so we could simply associate
‘who’ with a person and ‘where’ with a location, and have them independently
converted to student/author and shelf number and so on in the stage where the
keywords are being mapped to a knowledge base.

In the case of ‘which’, it appears as a determiner in questions, and the noun
it modifies can be directly considered to be the objective of the question (‘Which
book is...” or ‘In which year...”) .

We also note the presence of a construction ‘how many’, which is looking for a
numerical answer, which overrides any other objective identified in the question
(which is relegated to a constraint).

Questions with ‘how’ or ‘why’ are not considered, as they would typically
elicit subjective answers. However, questions themselves are not classified. Sep-
arate rules are required for questions without question words, which use modals
or auxiliary verbs for question formation.
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Yes/No Questions We identify the questions which are formed using con-
structions of auxiliary and modal verbs, which are looking for a yes/no answer.
Such questions are structured slightly differently and require a different set of
rules. Instead of looking for an objective - the answer type is clearly known to
us here - we consider the nsubj (nominal subject), the dobj (direct object) and
any constraints identified, all together as constraints.

This could introduce some difficulty during mapping to a knowledge repre-
sentation, but the simplicity lies in the fact that if there is an instance that
satisfies all the listed constraints, we can return an answer of yes, else we can
return a no.

However, there are illocutionary implicatures to think about; for example,
consider ‘Do you have research papers related to NLP?’ Here, the answer is
technically yes or no, but the user really wants a list of research papers related
to NLP, as opposed to a question like ‘Is the Fountainhead available for issuing?’
Since this distinction is pragmatic, we do not attempt to resolve it.

Modifiers and Conjunctions In order to find constraints, first we look at all
the modifiers of the nsubj/dobj that has been identified. Any adjectives associ-
ated with the nubj/dobj are considered to be constraints.

Typically, the amod (adjectival modifier) tags are related to the words that
directly modify the word and should be part of the left side of the query (such
as latest edition) and the words tagged nmod (noun modifier) are part of the
right side of the query equation (such as Digit magazine). The idea of a query
equation if explained in further detail in section 4.

We group the nouns related through the compound tags (such as Natural
Language Processing, Data Structures, etc). This kind of grouping may fail in
certain cases where conjunctions are involved for example, SSAD and Project
is one single course name, but is treated as two different words by the parser,
such that any preposition preceding it has both of them separately as children.
For better grouping of such titles, a chunker may be used.

Temporal Information Certain temporal pragmatic information for example,
deictic constructions such as last week, till date, etc, must be identified and
processed.

Consider ‘Which is the latest edition of Digit magazine available?’. Here, lat-
est would require to be interpreted as

<<find edition magazine=Digit, date=max(date)>>

Here we see that though latest is a modifier for edition, it really needs to be
about the date; if the modifier had been oldest or first, we should be looking for
date = min(date) instead. Specific constructions (such as ‘in the year 2000’) are
taken care of as part of the information extracted from prepositions and their
dependents.
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Verbs and their modifiers We do not consider verbs and their modifiers since
we place very little emphasis on the information provided by verbs, except in
the case where agency of an act is a constraint, like in the case of ‘Who wrote
The Fountainhead?’ where we are looking for a person who is the agent of the
action ‘write’; here the verb provides significant information that tells us that
the user is looking for the author.

In case of questions that do not use question words, and instead use con-
structions such as ‘List X’ or ‘Show me X', the requisite information obtained
by the system will be the same, and these verbs do not add much value to the
information.

In the cases where the verb is considered important, significant information
provided by adverbial modifiers specially negations must be specially consid-
ered. The problem here is that the negation itself would be associated with the
verb, but the conversion of the query into the keyword and constraints format
requires the negation to move to a different keyword. Consider, ‘List all the books
which are not written by Ayn Rand’. Here, the action is ‘not written’, and the
neg tag is associated with written; however, the keyword and constraints must
look like: find books, author = not(Ayn Rand).

Example Consider the query, ‘List the students registered for honours projects
under Professor XYZ'.

A simplified dependency tree constructed from the tags provided by the Stan-
ford Dependency Parser would look like Fig.2. In this case, the information the
user is looking for (‘students’) is the direct object, and the constraints are di-
rectly related to it.

In order to identify this main objective of the question, we identify the direct
object of the main verb (root) of the question, tagged as dobj by the Stanford
parser. In certain cases, such as passive constructions, this is often tagged as
nsubjpass (subject, passive) (henceforth we refer to both as dobj). In cases with-
out a marked dobj, we look for other noun dependents of the verb such as nsubj
for constraints. In the case of questions with ’who’, the requisite information is
an agent, and the dobj is merely a constraint. This information is fairly obvious
and can be inferred directly from the question word.

Domain Independence This architecture of the system is domain indepen-
dent, and any dependencies must arise only from a required mapping of the
keyword and constraints to a knowledge system. For example, mapping a ‘who’
to a student is specific to a courses domain, while mapping a ‘who’ to an author
would be specific to a library domain. For this reason, we leave semantically sig-
nificant question words such as ‘who’ and ‘where’ undifferentiated, and merely
represented as person and location respectively.
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Fig. 2. Dependency Tree of a Sample Query

Table 2. Query Equations

Q: List the books written by Ayn Rand.

<< find books, written_-by = Ayn Rand >>

Here ‘written-by’ must be mapped to ‘author’.

Q: Which is the latest edition of Digit magazine available?

<< find edition, magazine=digit, date=max(date) >>

Here, latest is an amod, and is resolved to mean maz(date); the modifier
Digit is an nmod and is therefore equated as magazine=Digit.

Q: Do you have research papers related to NLP?

<< find research papers, topic = NLP >>

Here related to is being interpreted as topic; in fact the preposition ‘to’
by itself is used to arrive at this, so that the dependence on having to
consider all possibilities (related to, relevant to, etc.) is reduced.

Q: What books on socialism are available in the library?

<< find books, topic = socialism >>

Here ‘in the library’ is ignored, as it should be, but this is a domain
specific choice that is particularly filtered out. In any other case, it may
appear as an additional constraint (as location=library, for example)
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4 Query Equation

Once all the primary keywords and the relevant constraints have been identified,
we build a pseudo-SQL query like output to properly group the constraints. The
final output is merely for representational ease; the output itself is a collection of
keywords and related constraints, which can be mapped to any kind of knowledge
representation. However, since an SQL-like representation would be the easiest
to understand, we chose to demonstrate the output in that format. Since it is not
really SQL, and the terms are not mapped to any relations, we choose to call it
a query equation (mainly because we mostly equate some value as a constraint)

Examples of query equations are given in Table 2.

As can be seen, the query equation is in the form of a pseudo-SQL query; it
can be easily converted into a format that suits any knowledge representation,
provided the relations that the terms map to are known. Consider the first
example,

List the books written by Ayn Rand.
<<find books, written_-by = Ayn Rand >>

This can be mapped to an SQL query, say a relation books with attributes
book number, title, author, publisher, year, etc. as follows:

SELECT title FROM books WHERE author like ‘Ayn Rand’;

5 Evaluation

5.1 Accuracy

Table 3. Results

Corpus Accuracy
Library Domain 72.72%
Library Domain without 85.7%
questions with relative clauses
Course-management Domain 61.1%

The system was tested on a set of 128 questions for library domain obtained
through a survey, and another set of 150 questions on the courses domain created
by [1].

Since the emphasis is on identifying the right constraints, the evaluation is
based purely on whether the intended keywords and any associated constraints
are correctly identified from the question. A question’s objective is considered to
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be rightly identified only if both what the user is looking for and all the necessary
information related to it is identified correctly.

As is summarized in Table 3, the accuracy of the system increases when the
questions which have relative clause descriptions and therefore multiple verbs
(e.g. ‘What other books does the library have that were written by the author of
the Da Vinci Code?’) are not considered.

There is a significant drop in the accuracy when tested on a course manage-
ment domain; the level of ambiguity in these questions was found to be higher,
along with far fewer preposition dependent constraints and more relative clause
questions.

5.2 Error Analysis

Apart from parser errors, there are many other errors introduced due to over-
sight, ambiguous structures, grammatically unsound sentences, etc.

Conjunction - ‘and’ One of the significant problems occurs with conjunctions
such as ‘and’ that link two relevant words together. Consider ‘Harry Potter and
the Philosopher’s Stone’; in this case, Harry Potter and Philosopher’s Stone are
parsed as two separate arguments linked by a conjunction, but they are in fact
part of the same title. In such cases, it is difficult to tell if the user has two
different constraints or just one (‘I want books by Ayn Rand and Dan Brown’)
if we consider them separately, a search for Harry Potter would list all the seven
books of the series as relevant, instead of just the first book. In certain cases, only
one of them might be relevant; in such cases there has been no way to resolve
the issue. Also consider cases with multiple unrelated constraints separated by
conjunctions: for example, ‘Which students are the TAs of NLP?’ and ‘Which
students are TAs and are registered for NLP?’.

Syntactic Parsing Issues Constructions such as dangling prepositions (‘How
many credits is NLP for?’, ‘Which Y does X belong to?’) lead to parser errors or
unexpected dependencies that are not accounted for. Sometimes certain words
are skipped by the parser.

More significantly, there is a PP attachment problem - consider the following
queries:

(a) Who is the author of The Wind in the Willows?
(b) Is The Fountainhead present in the library?
(¢) Who is the author of Body in the Library?

In (a), the PP in the Willows is part of the title, while in (b), in the library is
irrelevant information, which cannot really be filtered domain specifically either,
as demonstrated in (¢) where in the Library is part of the title. Therefore, gauging
the relevance of an argument is a challenge; there are too many possibilities that
cannot all be taken into account individually.

This issue is not limited to prepositions alone; consider ‘What is the ISBN
of the book Talent is Overrated?’, where the is belonging to the book title is
recognized as a separate verb copula and is assigned arguments.
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Pragmatics Resolving pragmatic issues is also a challenge. Consider ‘Which is
the most popular book on mathematics?’. Here, we can extract information on
the modifiers as
<<find most(popular(book) , topic = mathematics >>

However, converting ‘the most popular’ to mean that we need to group by
book title, then count the number of times each book has been issued and then
return the one with the highest count, is quite a challenge; we need to infer that
popular here is a reference to the number of times a book has been issued, which
requires deriving information that is not present in the query.

Relative Clauses Any arguments that are expressed through non-prepositional
phrases, such as through relative clauses, which bring in additional verb and its
arguments, are less likely to be identified correctly as relevant constraints. The
accuracy of the system improves when such queries are not considered.

Consider ‘What other books does the library have that were written by the
author of the Da Vinci Code?’. There are two parts to the query; firstly we need
to find the author of the Da Vinci Code, then find books written by that author,
and also remove the book The Da Vinci Code itself and display the results. The
query is complex and there are pragmatic issues as well.

6 Future Work

The system provides a simple framework requiring very little coding in order
to extract relevant information from a user’s query. Pre-processing problems
involving spelling and grammatical errors, synonyms, negations, missing argu-
ments, abbreviations, etc. need to be handled in order to make the system prac-
tically useful. Also, the verbs must be lemmatized and eventually replaced with
a mapped, representative synonym that is part of the knowledge base taught,
instruct, take, etc. must all map to teach, for example.

In order to find complete constraints, such as the full name of the Professor
or the full course name (like ‘Linear Algebra and its Applications’), dependency
relations are sometimes inadequate, since the tags often resolve to separate de-
terminers and other function words which are often part of the title. This infor-
mation can be captured using a chunker. The chunks provided often correspond
to the entire title or name, providing us with the complete constraint.

It is important to handle verbs and verb modifiers in order to present a
complete picture of the objective of the user. These must necessarily be handled.
Handling multiple verbs and multiple main keywords is also necessary, as in the
case of relative clauses. Our system currently only handles single line queries;
multi-line queries are quite common and provide context spanning over two or
more sentences which must be taken into account in order to extract relevant
information (‘I like stories about dragons. Are there any such fantasy series?
Ive already read A Song of Ice and Fire’).
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Conjunctions are a very common occurrence, and multiple arguments must
be considered. However, it may be difficult to identify a more relevant argument
from a less relevant one.

To resolve intention recognition issues, such as in the case of Do you have
research papers related to NLP?, which is technically a yes/no question but the
user intention is really to get a list of research papers, a corpus that has been
annotated with dialogue acts can be used.

A corpus with a wide variation in the pattern of questions, along with ques-
tions in statement form must be analyzed and considered, in order to make the
system more accurate for generic queries.

The usefulness of the information gathered through this method and the ease
of mapping to a data representation must also be studied.

The possibility of increasing the accuracy by using statistical machine learn-
ing methods also needs to be explored.
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